Senin, 05 April 2010

Sejarah AMD


Perkembangan kecepatan processor, sebenarnya sudah dirancang berpuluh-puluh tahun yang lampau.

Bayangkan jika sebuah transistor berukuran 1 cm2, berapa besar ruang yang dibutuhkan untuk meletakkan sebuah komputer? Padahal, dalam sebuah komputer, terutama dalam processor, terdapat jutaan transistor. Pada tahun 1980-an, processor Pentium 486 memiliki 275.000 transistor, sedangkan Pentium II memiliki sedikitnya 7,5 juta transistor. Tak kurang dari 40 juta transistor ada dalam sebuah processor Pentium 4 atau Athlon XP. Bayangkan, jika terdapat 40 juta transistor pada sekeping processor selebar 5 cm2, seberapa besar, atau tepatnya seberapa mungil, ukuran satu buah transistor?

Jumlah transistor berbanding lurus dengan kecepatan processor. Semakin banyak transistor dalam sebuah processor, semakin tinggi pula kecepatan processor tersebut. Sebab, semakin banyak transistor, semakin besar pula kemampuan menjalankan instruksi paralel dalam setiap detik. Jika processor 486 “hanya” bisa menjalankan 20 MIPS (Million Instruction Per Second), maka Pentium 4 mampu menjalankan 1,5 juta MIPS.

Dalam perkembangannya, processor selalu mengalami peningkatan kinerja. Bukan hanya produk Intel yang bernama Pentium, tetapi juga processor AMD. Peningkatan kinerja ini selalu berdasarkan perhitungan yang matematis. Perhitungan matematis inilah yang disebut sebagai Hukum Moore. Dalam Hukum Moore disebutkan, bahwa jumlah transistor dalam sebuah chip akan berlipat ganda setiap dua tahun.

Hukum Moore dikemukakan oleh Gordon Moore, peraih gelar PhD bidang fisika dan kimia dari Caltech. Saat bekerja di Fairchild Semiconductor, ia menulis sebuah artikel berjudul “Cramming More Components Onto Integrated Circuits” di majalah Electronics No. 8 Volume 38 pada 19 April 1965. Tulisannya inilah yang disebut sebagai Hukum Moore.

Gordon Moore bersama Robert Noyce mendirikan Intel pada tahun 1968. Tak heran jika kini Gordon Moore dikenal sebagai salah satu orang terkaya di dunia. Betapa tidak, berdasarkan data riset Mercury Research pada tahun 2003, produk Intel menguasai 83,6% pasar processor dunia yang bernilai jutaan dolar AS. Meski Gordon Moore bukan penemu transistor, gagasan yang dilontarkan mengenai kecenderungan peningkatan pemakaian jumlah transistor pada integrated circuit (IC) telah memberikan sumbangan besar bagi dunia teknologi informasi.

Banyak kalangan yang sempat diragukan sampai kapan Hukum Moore bisa dianggap valid. Namun, sejak Intel memproduksi chip 70-megabit dengan lebih dari satu setengah miliar transistor berteknologi 65 nanometer (nm), kepercayaan semakin meningkat. Hukum Moore ternyata masih relevan dalam perkembangan processor saat ini. Bayangkan, transistor dalam teknologi 65 nm, satu nanometer sama dengan sepermiliar meter, masih memiliki saklar untuk mengaktifkan transistor sebesar 35 nm.

Proses teknologi baru ini meningkatkan jumlah transistor-transistor kecil yang dapat dimuat ke dalam sebuah chip, memberi pijakan bagi Intel untuk menghadirkan processor-processor multi-core masa depan. Proses teknologi 65 nm juga meliputi beberapa fitur unik untuk menghemat daya dan meningkatkan kinerja. Pada bulan November 2003, Intel mengumumkan penggunaan proses 65 nm untuk membuat SRAM 4-megabit. Sejak itu, Intel telah melakukan fabrikasi dari SRAM 70-megabit yang berfungsi penuh menggunakan proses ini. Sel-sel SRAM yang kecil memungkinkan bagi integrasi cache lebih besar dalam processor, yang meningkatkan kinerja.
Setiap sel memory SRAM memiliki enam transistor yang dikemas dalam bidang seluas 0.57 µm. Kira-kira 10 juta dari transistor tersebut dapat ditempatkan ke dalam satu milimeter persegi, setara dengan ukuran titik yang dihasilkan oleh pulpen.

Anti-Hukum Moore
Sebagaimana sebuah aturan buatan manusia lainnya, Hukum Moore mulai diganggu dan digugat. Menurut Hukum Moore, jumlah transistor dalam sebuah chip akan berlipat ganda setiap dua tahun. Penggandaan ini menghasilkan lebih banyak fitur, peningkatan kinerja, dan penurunan biaya untuk setiap transistor. Namun seiring dengan kian mengecilnya ukuran transistor, peningkatan daya dan panas menjadi masalah yang kian berkembang.

Oleh karena itu, implementasi fitur-fitur, teknik, dan struktur baru mutlak diperlukan. Intel menjawab dengan mengintegrasikan fitur-fitur hemat daya ke dalam proses teknologi 65 nm. Fitur-fitur ini berperan penting dalam menghadirkan komputasi dan produk-produk komunikasi yang memiliki efisiensi daya di masa depan.
Teknologi strained silicon dari Intel —kali pertama diimplementasikan pada proses teknologi Intel 90 nm—dikembangkan lagi pada teknologi 65 nm. Generasi kedua dari teknologi strained silicon meningkatkan kinerja transistor antara 10 sampai 15 persen tanpa memperbesar kebocoran.

Singkatnya, transistor-transistor ini dapat memperkecil kebocoran sebanyak empat kali dibandingkan dengan transistor-transistor 90 nm. Akibatnya, transistor-transistor pada proses teknologi 65 nm memiliki peningkatan kinerja tanpa peningkatan kebocoran yang signifikan.

Transistor-transistor Intel 65 nm memiliki lebar gerbang lebih kecil sebesar 35 nm dan ketebalan gerbang oksida sebesar 1,2 nm, yang kombinasinya menghasilkan peningkatan kinerja dan penurunan kapasitas gerbang. Penurunan kapasitas gerbang pada akhirnya akan menurunkan daya aktif chip. Proses terbaru ini juga mengintegrasikan delapan lapis cooper yang saling terhubung dan menggunakan suatu materi dielektrik “lowk” yang meningkatkan kecepatan sinyal di dalam chip dan mengurangi konsumsi daya chip.

Bagian ke 2

Intel juga telah mengimplementasikan “sleep transistor” dalam SRAM 65nm. Transistor-transistor tersebut akan memadamkan aliran yang ada ke blok-blok dari SRAM ketika mereka tidak sedang digunakan, yang secara signifikan membatasi sumber konsumsi daya pada chip. Fitur ini bermanfaat bagi perangkat yang menggunakan tenaga baterai, seperti laptop.

Dalam tulisannya, Moore meramalkan, pemakaian transistor pada keping IC meningkat secara eksponensial dua kali lipat setiap tahun. Prediksi Moore dikenal sebagai Hukum Moore dan terbukti hingga saat ini. Namun, kecenderungan tersebut terus menurun dan mulai dipertanyakan ketepatannya, sehingga peningkatan jumlah IC secara eksponensial berlangsung rata-rata menjadi setiap 18 bulan.

Namun Gordon Moore mempertahankan pendapatnya dan membantah bahwa Hukum Moore tidak lagi relevan dalam penjelasannya di depan International Solid State Circuits Conference (ISSCC) pada 10 Februari 2003 dalam presentasi berjudul No “Exponential Forever, But We Can Delay Forever”. Moore mengakui, prediksinya tidak selamanya akurat. Meski demikian, Hukum Moore terus dipelajari dan menjadi kajian yang penting.

Evolusi Hukum Moore
Hukum Moore bukan sekadar prediksi dan hasil pengamatan belaka. Saat ini, Hukum Moore telah dijadikan target dan tujuan yang ingin dicapai dalam pengembangan industri semikonduktor. Peneliti di industri prosesor berusaha mewujudkan Hukum Moore dalam pengembangan produknya.

Secara tidak langsung, Hukum Moore menjadi umpan balik (feedback) untuk mengendalikan laju peningkatan jumlah transistor pada keping IC. Hukum Moore telah mengendalikan semua orang untuk bersama-sama mengembangkan processor.
Di sisi lain, munculnya processor dual-core yang memiliki 1,7 miliar transistor di dalamnya membuka babak baru pembahasan Hukum Moore. Kedatangan processor dual-core, memunculkan pergeseran ramalan dalam Hukum Moore.

Sebab, clock dan kecepatan processor sudah bisa dikatakan sulit untuk berkembang lagi. Jika dikembangkan, maka konsekuensinya adalah panas berlebihan dan desain processor yang sulit diterapkan. Apalagi, bus integrator hingga saat ini belum ada. Selain itu pengembangan lebih lanjut, tanpa adanya rancang ulang kontruksi processor hanya melahirkan bottleneck dalam CPU.

Selain itu, processor dual-core juga sudah melejit dalam waktu kurang dari dua tahun, sejak processor versi sebelumnya. Mungkin, yang bisa dikaitkan dengan Hukum Moore adalah kecepatannya saja yang masih bisa diramalkan. Mengenai jumlah transistor dalam sebuah processor, tampaknya sudah tidak relevan lagi.
Jadi, Hukum Moore memang sudah sepatutnya dipertanyakan relevansinya dengan perkembangan processor yang semakin melejit. Atau setidaknya, perlu dimunculkan Hukum Moore v2.

Catatan Penting Kilas Balik Perjalanan Processor
Ada baiknya kita menyimak kilas balik perjalanan processor, untuk melihat teknologi yang berkembang dari masa ke masa.

1970-an
Diawali Intel seri MCS4, sebuah processor yang menjadi cikal bakal i4040. Processor 4 bit ini direncanakan pada kalkulator pesanan sebuah perusahaan Jepang, namun kinerjanya lebih hebat dari yang diharapkan. Sehingga Intel membeli hak guna dari perusahaan Jepang tersebut untuk perkembangan dan penelitian lebih lanjut.
Kemudian, muncul processor 8 bit pertama i8008. Namun, kurang berhasil karena multivoltage. i8080 adalah processor dengan register internal 8-bit, bus eksternal 8-bit, dan memory addressing 20-bit (dapat mengakses 1 MB memori total), dan modus operasi REAL. Muncul juga processor MC6800 dari Motorola pada tahun 1974 dan Z80 dari Zilog pada 1976. Selain itu, processor-processor lain, misalnya seri 6500 buatan MOST, Rockwell, Hyundai, WDC, NCR, dan sebagainya juga sudah mulai tersedia di pasaran industri.

Seri 8085 keluar pada 1977, dengan clock generator onprocessor dan menggunakan single voltage. Dilanjutkan dengan i8086, processor dengan register 16-bit, bus data eksternal 16-bit, dan memory addressing 20-bit. Saat diluncurkan pada tahun 1978, i8086 menggunakan teknologi HMOS, yang komponen pendukungnya langka, sehingga sangat mahal. Berikutnya muncul 80186 dan i80188 yang sudah dikemas dalam bentuk bujursangkar dengan 17 kaki persisi (PLCC/LCC) atau 2 deret kaki persisi (PGA). i80186 mengawali chip DMA dan interrupt controller yang disatukan ke dalam processor.

1980-an
IBM memproduksi processor dengan arsitektur RISC 32-bit pertama untuk PC. Namun karena software masih langka, IBM PC ini tidak bisa optimal. Intel membuat i80286, dengan register 16-bit, bus eksternal 16-bit, dan mode terbatas yang disebut mode STANDARD dengan memory addressing 24-bit yang mampu mengakses memory 16 MB serta kompatibel dengan seri sebelumnya.

Kemudian di tahun 1985, Intel meluncurkan desain processor yang baru, yakni i80386. Sebuah prosesor 32-bit, bus data eksternal 32-bit, dan kompatibilitas dengan generasi sebelumnya, serta mampu mengakses memory hingga 4 GB. Chip ini dikemas dalam bentuk Pin Grid Array (PGA).

Pada tahun 1989, Intel meluncurkan i80486DX. Karena banyak permintaan pasar processor murah, maka Intel meluncurkan i80486SX yang merupakan processor i80486DX tanpa sirkuit FPU.

AMD dan Cyrix kemudian membeli desain i80386 dan i80486DX untuk membuat processor yang kompatibel dengan Intel. Jadi, AMD dan Cyrix tidak melakukan proses perancangan berdasarkan chip seri sebelumnya, melainkan berdasarkan rancangan chip yang sudah ada untuk membuat chip yang sekelas.

Tahun 1990-an
Intel meluncurkan Pentium, dengan struktur PGA lebih besar dan kecepatan lebih tinggi. Pada generasi Pentium, Intel telah menerapkan kemampuan pipeline yang biasanya hanya ada dalam processor RISC.

Tahun 1995, Pentium Pro mulai muncul. Ada inovasi baru dengan disatukannya cache memory ke dalam processor, sehingga menuntut adanya socket 8. Pin-pin processor ini terbagi 2 grup, 1 untuk cache memory, dan 1 lagi untuk processor-nya sendiri. Desain ini memungkinkan efisiensi penanganan instruksi 32-bit.

Dilanjutkan tahun 1996, Pentium MMX keluar. Sampai sekarang belum ada definisi jelas mengenai MMX. Ada keterbatasan desain pada MMX, yakni modul MMX ditambahkan dalam Pentium tanpa rancang ulang, sehingga terpaksa unit MMX dan FPU sharing. Dan saat FPU aktif, maka MMX nonaktif, semikian sebaliknya. Sehingga Pentium MMX dalam mode MMX tidak kompatibel dengan Pentium.

Di sisi lain, AMD K5-PR75 mulai melejit. Sebuah “clone” i80486DX dengan kecepatan internal 133 MHz dan clock bus 33 MHz. Lalu di tahun 1997, Intel meluncurkan Pentium II, Pentium Pro dengan teknologi MMX yang memiliki beberapa inovasi baru. Pertama, cache memory tidak menjadi 1 dengan inti processor seperti Pentium Pro. Inovasi kedua, adanya SEC (Single Edge Cartidge) yang memungkinkan pemasangan processor Pentium Pro di slot SEC dengan adapter khusus. Kedua inovasi ini memungkinkan processor untuk bekerja secara lebih optimal.

Tahun 2000-an
Perjalananan perkembangan processor masih terus berlanjut. Intel meluncurkan processor dengan kemampuan Hyper-Threading, dan seterusnya. Sedangkan AMD mulai meluncurkan teknologi 64-bit dan seterusnya.

Akhir perjalanan ini sepertinya tidak akan tercapai. Sebab, teknologi tak berhenti seiring usia peradaban manusia

Sejarah Prosesor Intel

Berikut adalah sedikit sejarah perkembangan prosesor Intel dan para clone-nya yang berhasil disarikan

  • Debut Intel dimulai dengan processor seri MCS4 yang merupakan cikal bakal dari prosesor i4040. Processor 4 bit ini yang direncanakan untuk menjadi otak calculator , pada tahun yang sama (1971), intel membuat revisi ke i440. Awalnya dipesan oleh sebuah perusahaan Jepang untuk pembuatan kalkulator , ternyata prosesor ini jauh lebih hebat dari yang diharapkan sehingga Intel membeli hak guna dari perusahaan Jepang tersebut untuk perkembangan dan penelitian lebih lanjut. Di sinilah cikal bakal untuk perkembangan ke arah prosesor komputer.
  • Berikutnya muncul processor 8 bit pertama i8008 (1972), tapi agak kurang disukai karena multivoltage.. lalu baru muncul processor i8080, disini ada perubahan yaitu jadi triple voltage, pake teknologi NMOS (tidak PMOS lagi), dan mengenalkan pertama kali sistem clock generator (pake chip tambahan), dikemas dalam bentuk DIP Array 40 pins. Kemudian muncul juga processor2 : MC6800 dari Motorola -1974, Z80 dari Zilog -1976 (merupakan dua rival berat), dan prosessor2 lain seri 6500 buatan MOST, Rockwell, Hyundai, WDC, NCR dst. Z80 full compatible dengan i8008 hanya sampai level bahasa mesin. Level bahasa rakitannya berbeda (tidak kompatibel level software). Prosesor i8080 adalah prosesor dengan register internal 8-bit, bus eksternal 8-bit, dan memori addressing 20-bit (dapat mengakses 1 MB memori total), dan modus operasi REAL.
  • Thn 77 muncul 8085, clock generatornya onprocessor, cikal bakalnya penggunaan single voltage +5V (implementasi s/d 486DX2, pd DX4 mulai +3.3V dst).
  • i8086, prosesor dengan register 16-bit, bus data eksternal 16-bit, dan memori addressing 20-bit. Direlease thn 78 menggunakan teknologi HMOS, komponen pendukung bus 16 bit sangat langka , sehingga harganya menjadi sangat mahal.
  • Maka utk menjawab tuntutan pasar muncul i8088 16bit bus internal, 8bit bus external. Sehingga i8088 dapat memakai komponen peripheral 8bit bekas i8008. IBM memilih chip ini untuk pebuatan IBM PC karena lebih murah daripada i8086. Kalau saja CEO IBM waktu itu tidak menyatakan PC hanyalah impian sampingan belaka, tentu saja IBM akan menguasai pasar PC secara total saat ini. IBM PC first release Agustus 1981 memiliki 3 versi IBM PC, IBM PC-Jr dan IBM PC-XT (extended technology). Chip i8088 ini sangat populer, sampai NEC meluncurkan sebuah chip yang dibangun berdasarkan spesifikasi pin chip ini, yang diberi nama V20 dan V30. NEC V20 dan V30 adalah processor yang compatible dengan intel sampai level bahasa assembly (software).

Chip 8088 dan 8086 kompatibel penuh dengan program yang dibuat untuk chip 8080, walaupun mungkin ada beberapa program yang dibuat untuk 8086 tidak berfungsi pada chip 8088 (perbedaan lebar bus)

  • Lalu muncul 80186 dan i80188.. sejak i80186, prosessor mulai dikemas dalam bentuk PLCC, LCC dan PGA 68 kaki.. i80186 secara fisik berbentuk bujursangkar dengan 17 kaki persisi (PLCC/LCC) atau 2 deret kaki persisi (PGA) dan mulai dari i80186 inilah chip DMA dan interrupt controller disatukan ke dalam processor. semenjak menggunakan 286, komputer IBM menggunakan istilah IBM PC-AT (Advanced Technology)dan mulai dikenal pengunaan istilah PersonalSystem (PS/1). Dan juga mulai dikenal penggunaan slot ISA 16 bit yang dikembangkan dari slot ISA 8 bit , para cloner mulai ramai bermunculan. Ada AMD, Harris & MOS yang compatible penuh dengan intel. Di 286 ini mulai dikenal penggunaan Protected Virtual Adress Mode yang memungkinkan dilakukannya multitasking secara time sharing (via hardware resetting).

Tahun 86 IBM membuat processor dengan arsitektur RISC 32bit pertama untuk kelas PC. Namun karena kelangkaan software, IBM RT PC ini "melempem" untuk kelas enterprise, RISC ini berkembang lebih pesat, setidaknya ada banyak vendor yang saling tidak kompatibel.

  • Lalu untuk meraih momentum yang hilang dari chip i8086, Intel membuat i80286, prosesor dengan register 16-bit, bus eksternal 16-bit, mode protected terbatas yang dikenal dengan mode STANDARD yang menggunakan memori addressing 24-bit yang mampu mengakses maksimal 16 MB memori. Chip 80286 ini tentu saja kompatibel penuh dengan chip-chip seri 808x sebelumnya, dengan tambahan beberapa set instruksi baru. Sayangnya chip ini memiliki beberapa bug pada desain hardware-nya, sehingga gagal mengumpulkan pengikut.
  • Pada tahun 1985, Intel meluncurkan desain prosesor yang sama sekali baru: i80386. Sebuah prosesor 32-bit , dalam arti memiliki register 32-bit, bus data eksternal 32-bit, dan mempertahankan kompatibilitas dengan prosesor generasi sebelumnya, dengan tambahan diperkenalkannya mode PROTECTED 32-BIT untuk memori addressing 32-bit, mampu mengakses maksimum 4 GB , dan tidak lupa tambahan beberapa instruksi baru. Chip ini mulai dikemas dalam bentuk PGA (pin Grid Array)
  • Prosesor Intel sampai titik ini belum menggunakan unit FPU secara
    internal . Untuk dukungan FPU, Intel meluncurkan seri 80x87. Sejak 386 ini mulai muncul processor cloner : AMD, Cyrix, NGen, TI, IIT, IBM (Blue Lightning) dst, macam-macamnya :

    i80386 DX (full 32 bit)
    i80386 SX (murah karena 16bit external)
    i80486 DX (int 487)
    i80486 SX (487 disabled)
    Cx486 DLC (menggunakan MB 386DX, juga yang lain)
    Cx486 SLC (menggunakan MB 386SX)
    i80486DX2
    i80486DX2 ODP
    Cx486DLC2 (arsitektur MB 386)
    Cx486SLC2 (arsitektur MB 386)
    i80486DX4
    i80486DX4 ODP
    i80486SX2
    Pentium
    Pentium ODP

  • Sekitar tahun 1989 Intel meluncurkan i80486DX. Seri yang tentunya sangat populer, peningkatan seri ini terhadap seri 80386 adalah kecepatan dan dukungan FPU internal dan skema clock multiplier (seri i486DX2 dan iDX4), tanpa tambahan instruksi baru. Karena permintaan publik untuk prosesor murah, maka Intel meluncurkan seri i80486SX yang tak lain adalah prosesor i80486DX yang sirkuit FPU-nya telah disabled . Seperti yang seharusnya, seri i80486DX memiliki kompatibilitas penuh dengan set instruksi chip-chip seri sebelumnya.
  • AMD dan Cyrix kemudian membeli rancangan prosesor i80386 dan i80486DX untuk membuat prosesor Intel-compatible, dan mereka terbukti sangat berhasil. Pendapat saya inilah yang disebut proses 'cloning', sama seperti cerita NEC V20 dan V30. AMD dan Cyrix tidak melakukan proses perancangan vertikal (berdasarkan sebuah chip seri sebelumnya), melainkan berdasarkan rancangan chip yang sudah ada untuk membuat chip yang sekelas.
  • Tahun 1993, dan Intel meluncurkan prosesor Pentium. Peningkatannya terhadap i80486: struktur PGA yang lebih besar (kecepatan yang lebih tinggi , dan pipelining, TANPA instruksi baru. Tidak ada yang spesial dari chip ini, hanya fakta bahwa standar VLB yang dibuat untuk i80486 tidak cocok (bukan tidak kompatibel) sehingga para pembuat chipset terpaksa melakukan rancang ulang untuk mendukung PCI. Intel menggunakan istilah Pentium untuk meng"hambat" saingannya. Sejak Pentium ini para cloner mulai "rontok" tinggal AMD, Cyrix . Intel menggunakan istilah Pentium karena Intel kalah di pengadilan paten. alasannya angka tidak bisa dijadikan paten, karena itu intel mengeluarkan Pentium menggunakan TM. AMD + Cyrix tidak ingin tertinggal, mereka mengeluarkan standar Pentium Rating (PR) sebelumnya ditahun 92 intel sempat berkolaborasi degan Sun, namun gagal dan Intel sempat dituntut oleh Sun karena dituduh menjiplak rancangan Sun. Sejak Pentium, Intel telah menerapkan kemampuan Pipelining yang biasanya cuman ada diprocessor RISC (RISC spt SunSparc). Vesa Local Bus yang 32bit adalah pengembangan dari arsitektur ISA 16bit menggunakan clock yang tetap karena memiliki clock generator sendiri (biasanya >33Mhz) sedangkan arsitektur PCI adalah arsitektur baru yang kecepatan clocknya mengikuti kecepatan clock Processor (biasanya kecepatannya separuh kecepatan processor).. jadi Card VGA PCI kecepatannya relatif tidak akan sama di frekuensi MHz processor yang berbeda alias makin cepat MHz processor, makin cepat PCI-nya
  • Tahun 1995, kemunculan Pentium Pro. Inovasi disatukannya cache memori ke dalam prosesor menuntut dibuatnya socket 8 . Pin-pin prosesor ini terbagi 2 grup: 1 grup untuk cache memori, dan 1 grup lagi untuk prosesornya sendiri, yang tak lebih dari pin-pin Pentium yang diubah susunannya . Desain prosesor ini memungkinkan keefisienan yang lebih tinggi saat menangani instruksi 32-bit, namun jika ada instruksi 16-bit muncul dalam siklus instruksi 32-bit, maka prosesor akan melakukan pengosongan cache sehingga proses eksekusi berjalan lambat. Cuma ada 1 instruksi yang ditambahkan: CMOV (Conditional MOVe) .
  • Tahun 1996, prosesor Pentium MMX. Sebenarnya tidak lebih dari sebuah Pentium dengan unit tambahan dan set instruksi tambahan, yaitu MMX. Intel sampai sekarang masih belum memberikan definisi yang jelas mengenai istilah MMX. Multi Media eXtension adalah istilah yang digunakan AMD . Ada suatu keterbatasan desain pada chip ini: karena modul MMX hanya ditambahkan begitu saja ke dalam rancangan Pentium tanpa rancang ulang, Intel terpaksa membuat unit MMX dan FPU melakukan sharing, dalam arti saat FPU aktif MMX non-aktif, dan sebaliknya. Sehingga Pentium MMX dalam mode MMX tidak kompatibel dengan Pentium.

Bagaimana dengan AMD K5? AMD K5-PR75 sebenarnya adalah sebuah 'clone' i80486DX dengan kecepatan internal 133MHz dan clock bus 33MHz . Spesifikasi Pentium yang didapat AMD saat merancang K5 versi-versi selanjutnya dan Cyrix saat merancang 6x86 hanyalah terbatas pada spesifikasi pin-pin Pentium. Mereka tidak diberi akses ke desain aslinya. Bahkan IBM tidak mampu membuat Intel bergeming (Cyrix, mempunyai kontrak terikat dengan IBM sampai tahun 2005)

Mengenai rancangan AMD K6, tahukah anda bahwa K6 sebenarnya adalah rancangan milik NexGen ? Sewaktu Intel menyatakan membuat unit MMX, AMD mencari rancangan MMX dan menambahkannya ke K6. Sayangnya spesifikasi MMX yang didapat AMD sepertinya bukan yang digunakan Intel, sebab terbukti K6 memiliki banyak ketidakkompatibilitas instruksi MMX dengan Pentium MMX.

  • Tahun 1997, Intel meluncurkan Pentium II, Pentium Pro dengan teknologi MMX yang memiliki 2 inovasi: cache memori tidak menjadi 1 dengan inti prosesor seperti Pentium Pro , namun berada di luar inti namun berfungsi dengan kecepatan processor. Inovasi inilah yang menyebabkan hilangnya kekurangan Pentium Pro (masalah pengosongan cache) Inovasi kedua, yaitu SEC (Single Edge Cartidge), Kenapa? Karena kita dapat memasang prosesor Pentium Pro di slot SEC dengan bantuan adapter khusus. Tambahan : karena cache L2 onprocessor, maka kecepatan cache = kecepatan processor, sedangkan karena PII cachenya di"luar" (menggunakan processor module), maka kecepatannya setengah dari kecepatan processor. Disebutkan juga penggunaan Slot 1 pada PII karena beberapa alasan :

Pertama, memperlebar jalur data (kaki banyak - Juga jadi alasan Socket 8), pemrosesan pada PPro dan PII dapat paralel. Karena itu sebetulnya Slot 1 lebih punya kekuatan di Multithreading / Multiple Processor. ( sayangnya O/S belum banyak mendukung, benchmark PII dual processorpun oleh ZDBench lebih banyak dilakukan via Win95 ketimbang via NT)

Kedua, memungkinkan upgrader Slot 1 tanpa memakan banyak space di Motherboard sebab bila tidak ZIF socket 9 , bisa seluas Form Factor(MB)nya sendiri konsep hemat space ini sejak 8088 juga sudah ada .Mengapa keluar juga spesifikasi SIMM di 286? beberapa diantaranya adalah efisiensi tempat dan penyederhanaan bentuk.

Ketiga, memungkinkan penggunaan cache module yang lebih efisien dan dengan speed tinggi seimbang dengan speed processor dan lagi-lagi tanpa banyak makan tempat, tidak seperti AMD / Cyrix yang "terpaksa" mendobel L1 cachenya untuk menyaingi speed PII (karena L2-nya lambat) sehingga kesimpulannya AMD K6 dan Cyrix 6x86 bukan cepat di processor melainkan cepat di hit cache! Sebab dengan spec Socket7 kecepatan L2 cache akan terbatas hanya secepat bus data / makin lambat bila bus datanya sedang sibuk, padahal PII thn depan direncanakan beroperasi pada 100MHz (bukan 66MHz lagi). Point inilah salah satu alasan kenapa intel mengganti chipset dari 430 ke 440 yang berarti juga harus mengganti Motherboard.

Pengertian LAN,WAN,MAN
Local Area Network



Local Area Network biasa disingkat LAN adalah jaringan komputer yang jaringannya hanya mencakup wilayah kecil; seperti jaringan komputer kampus, gedung, kantor, dalam rumah, sekolah atau yang lebih kecil. Saat ini, kebanyakan LAN berbasis pada teknologi IEEE 802.3 Ethernet menggunakan perangkat switch, yang mempunyai kecepatan transfer data 10, 100, atau 1000 Mbit/s. Selain teknologi Ethernet, saat ini teknologi 802.11b (atau biasa disebut Wi-fi) juga sering digunakan untuk membentuk LAN. Tempat-tempat yang menyediakan koneksi LAN dengan teknologi Wi-fi biasa disebut hotspot.

Pada sebuah LAN, setiap node atau komputer mempunyai daya komputasi sendiri, berbeda dengan konsep dump terminal. Setiap komputer juga dapat mengakses sumber daya yang ada di LAN sesuai dengan hak akses yang telah diatur. Sumber daya tersebut dapat berupa data atau perangkat seperti printer. Pada LAN, seorang pengguna juga dapat berkomunikasi dengan pengguna yang lain dengan menggunakan aplikasi yang sesuai.

Berbeda dengan Jaringan Area Luas atau Wide Area Network (WAN), maka LAN mempunyai karakteristik sebagai berikut :

1. Mempunyai pesat data yang lebih tinggi
2. Meliputi wilayah geografi yang lebih sempit
3. Tidak membutuhkan jalur telekomunikasi yang disewa dari operator telekomunikasi

Biasanya salah satu komputer di antara jaringan komputer itu akan digunakan menjadi server yang mengatur semua sistem di dalam jaringan tersebut.


WAN



WAN adalah singkatan dari istilah teknologi informasi dalam bahasa Inggris: Wide Area Network merupakan jaringan komputer yang mencakup area yang besar sebagai contoh yaitu jaringan komputer antar wilayah, kota atau bahkan negara, atau dapat didefinisikan juga sebagai jaringan komputer yang membutuhkan router dan saluran komunikasi publik.

WAN digunakan untuk menghubungkan jaringan lokal yang satu dengan jaringan lokal yang lain, sehingga pengguna atau komputer di lokasi yang satu dapat berkomunikasi dengan pengguna dan komputer di lokasi yang lain.


MAN



Metropolitan area network atau disingkat dengan MAN. Suatu jaringan dalam suatu kota dengan transfer data berkecepatan tinggi, yang menghubungkan berbagai lokasi seperti kampus, perkantoran, pemerintahan, dan sebagainya. Jaringan MAN adalah gabungan dari beberapa LAN. Jangkauan dari MAN ini antar 10 hingga 50 km, MAN ini merupakan jaringan yang tepaMetropolitan area network atau disingkat dengan MAN. Suatu jaringan dalam suatu kota dengan transfer data berkecepatan tinggi, yang menghubungkan berbagai lokasi seperti kampus, perkantoran, pemerintahan, dan sebagainya. Jaringan MAN adalah gabungan dari beberapa LAN. Jangkauan dari MAN ini antar 10 hingga 50 km, MAN ini merupakan jaringan yang tepat untuk membangun jaringan antar kantor-kantor dalam satu kota antara pabrik/instansi dan kantor pusat yang berada dalam jangkauannya

CARA dan LANGKAH INSTALASI WINDOWS SERVER 2003

dalam sistem Voucha II. Jika Anda menggunakan server built-up seperti IBM xSeries atau Dell PowerEdge, anda harus baca manual instalasi yang disertakan bersama server tersebut. Instalasi ini dapat diterapkan pada :
1. Windows Server 2003 x86
2. Windows Server 2003 x86 Service Pack 1
3. Windows Server 2003 x86 R2
4. Windows Server 2003 x86 Service Pack 2
Instalasi Windows Server 2003 hampir mirip dengan instalasi Windows XP dan sama mudahnya. Hal-hal yang perlu Anda siapkan:
1. CD/DVD instalasi Windows Server 2003 (Enterprise Edition)
2. CD/DVD driver untuk motherboard, video card, sound card, ethernet card, dll.
3. PC dengan RAM minimum 256 (disarankan 512MB atau lebih), hardisk 20GB (disarankan 40GB atau lebih), video card true-color dengan resolusi 1024×768.
Baiklah mari kita mulai:
Boot komputer dengan CD Windows Server 2003
Atur konfigurasi BIOS agar melakukan boot ke CD/DVD ROM. Masukkan CD/DVD Windows Server 2003. Anda akan mendapatkan layar selamat datang di setup Windows Server 2003.



Tekan tombol ‘ENTER’ di keyboard. Anda akan menuju ke layar EULA



Tekan ‘F8′ di keyboard untuk persetujuan lisensi Windows Server 2003.

Membuat Partisi

Jika hardisk Anda masih kosong, anda harus membuat partisi untuk sistem Windows Server 2003. Tekan ‘C’ untuk membuat partisi dan masukkan ukuran partisi yang dibutuhkan, misal 10000MB (1GB).



Jika sudah selesai, tekan ‘ENTER’.
Format partisi tersebut dengan filesystem NTFS dengan metode quickformat.



Tekan ‘ENTER’. Windows Server 2003 Setup memformat partisi hardisk Anda.



Setelah selesai, Windows Server 2003 Setup akan me-restart komputer dan boot ulang



Windows Server Setup GUI



Tunggu beberapa saat sampai muncul Wizard berikut:



Pilih ‘Customize’, dan lakukan setting seperti screen di bawah ini.



Klik ‘OK’, kembali ke layar sebelumnya dan klik ‘Next’.



Isi dengan Nama Anda dan Nama Perusahaan Anda. Kemudian klik ‘Next’.



Pilih Licensing Mode ‘Per Server’ dan isi dengan jumlah koneksi yang dibutuhkan. Klik ‘Next’.



Isi ‘Computer Name’ dan password untuk Administrator. Klik ‘Next’.



Pilih ‘Time Zone’ dengan (GMT +07:00 ) Bangkok, Hanoi, Jakarta. Klik ‘Next’. Setup akan melakukan instalasi Network.





PIlih ‘Custom settings’ dan klik ‘Next’.



Pilih komponen ‘Internet Protocol (TCP/IP)’ dan klik ‘Properties’.



Isi ‘IP address’, ‘Subnet mask:’, ‘Default gateway:’ sesuai konfigurasi network Anda. Klik ‘OK’. Kemudian klik ‘Next’.



Isi nama Workgroup yang diinginkan, misalnya : ‘VOUCHA’. dan klik ‘Next’



Setup mencopy file-file komponen ke partisi Windows. Setelah itu Setup akan melakukan restart dan boot ulang komputer Anda.



Selamat, Anda berhasil melakukan instalasi Windows Server 2003!
Technorati Tags: windows-server-2003

Setup Windows Server 2003 - Bagian 2

Pada Setup Windows Server 2003 - Bagian 1, kita telah melakukan instalasi Windows Server 2003 dengan konfigurasi standar. Beberapa konfigurasi lainnya masih harus dicustomize agar sesuai dengan kebutuhan sistem yang diharapkan.
Pada bagian ke-2 ini, kita akan melakukan instalasi beberapa komponen tambahan yang diperlukan dan melakukan beberapa konfigurasi minimum untuk Windows Server 2003.
Instalasi Windows Server 2003 Service Pack 2
1. Masukkan CD Windows Server 2003 Service Pack 2
2. Jika Autorun tidak aktif, jalankan melalui menu Start.
Caranya:
1. Klik ‘Start’->’Run
2. Klik ‘Browse’. Pilih lokasi CD-ROM, dan pilih file ‘SRSP2.CMD’
3. Setup akan mengekstrak file-file instalasi dan menampilkan kotak dialog seperti berikut.



4. Klik ‘Next’ dan lanjutkan sampai selesai.
5. Restart


Instalasi Driver
Anda harus melakukan instalasi driver-driver hardware di komputer dengan CD/DVD instalasi hardware bersangkutan. Jika driver untuk Windows Server 2003 tidak ditemukan, coba dengan driver untuk Windows XP atau download dari website vendor bersangkutan.
Instalasi Internet Information Service (IIS)
1. Jalankan ‘Add or Remove Programs’ dari Control Panel
2. Klik button ‘Add/Remove Windows Components’
3. Double click ‘Application Server’
4. Double click ‘Internet Information Service (IIS)’



5. Pilih ‘File Transfer Protocol (FTP) Service’



6. Klik OK.

Membuat Partisi
Partisi untuk dokumen, database, dan file-file temporer sebaiknya dipisah. Untuk membuat partisi di Windows Server 2003, ikuti langkah berikut:
1. Jalankan ‘Control Panel’->’Administrative Tools’->’Computer Management’
2. Pilih ‘Disk Management’



3. Klik ‘Disk 0′ pada daftar disk dan klik kanan.
4. Pilih ‘New Partition’
5. Pilih ‘Extended Partition’, isi ukuran partisi yang dibutuhkan dan klik ‘Next’
6. Pilih filesystem ‘NTFS’.
7. Ulangi langkah 1-6 untuk partisi yang lain.

Membuat User Account
Anda harus membuat user account khusus untuk pemakaian biasa dan jangan gunakan account Administrator. Gunakan account Administrator jika diperlukan, misalnya instalasi software atau hardware.
1. Jalankan ‘Control Panel’->’Administrative Tools’->’Computer Management’
2. Pilih ‘Local Users and Groups’



3. Pilih ‘Users’
4. Klik kanan di daftar user dan pilih ‘New User’
5. Isi dengan nama user yang Anda inginkan.



6. Klik ‘Create’
Selamat, Windows Server 2003 telah siap digunakan sebagai Server. Untuk menggunakan Voucha II, Anda perlu melakukan instalasi Microsoft SQL Server 2000 dan Microsoft SQL Server 2000 - Service Pack 4
ANTENA DIRECTIONAL


Sebuah antena adalah bagian vital dari suatu pemancar atau penerima yang berfungsi untuk menyalurkan sinyal radio ke udara.Bentuk antena bermacam macam sesuai dengan desain,pola penyebaran dan frekuensi dan gain. Panjang antenna secara efektif adalah panjang gelombang frekuensi radio yang dipancarkannya.Antenna setengah gelombang adalah sangat poluler karena mudah dibuat dan mampu memancarkan gelombang radio Antenna Directional adalah antenna yang pola radiasi pancarannya terarah sehingga efektifitas pancaran radio hanya ke satu arah sajaecara efektif.
Sebuah antena directional atau berkas adalah sebuah antena yang meradiasikan kekuatan yang lebih besar dalam satu atau lebih petunjuk yang memungkinkan untuk meningkatkan performa pada mengirim dan menerima dan mengurangi campur tangan dari sumber-sumber yang tidak diinginkan.
Directional antena seperti antena yagi menyediakan peningkatan kinerja antena dipol ketika konsentrasi yang lebih besar radiasi dalam arah tertentu yang diinginkan.
Semua antena praktis setidaknya agak terarah, walaupun biasanya hanya arah di pesawat sejajar dengan bumi dianggap, dan praktis dapat dengan mudah antena Omnidirectional dalam satu pesawat.
Jenis yang paling umum adalah antena Yagi, dengan log-periodik antena, dan sudut reflektor, yang sering digabungkan dan dijual sebagai hunian komersial antena TV. Seluler repeater sering memanfaatkan arah antena eksternal untuk memberikan sinyal yang jauh lebih besar daripada yang dapat diperoleh pada standar ponsel.
Untuk panjang dan menengah panjang gelombang frekuensi, menara array digunakan dalam kebanyakan kasus sebagai antena directional.

contoh antena yagi:



☺ ANTENA OMNI DIRECTIONAL



Antena Omni directional dapat memancarkan gelombang ke segala arah.Yang termasuk. Contoh antena omnidirectional adalah antena model groundplane.

antenna Omnidirectional dapat memancarkan gelombang ke segala arah.Yang termasuk Antenna Directional adalah antena model Yagi seperti kebanyakan yang dipakai sebagai antena penerima siaran TV.Contoh antena omnidirectional adalah antena model groundplane.

1/4 Lambda antena 2.4Ghz WIFI….

ini adalah antena termudah yg bisa dibuat dengan penguatan sekitar 3-4 dBi tergantung tuning dan nilai2 element yg ada.antenna ini dibuat dr kawat copper (tembaga) atau brass (kuningan) dan mempunyai sudut elevasi reflektor 30* dan mempunyai arah pancaran ke segala arah “omnidirectional” kira2 gambarnya seperti ini…
Part List
-satu konektor tipe N female dgn 4 lobang sekitar,direkomendasikan mempunyai teflon insulasi diantara outer dan inner konektor.
-20 cm tembaga atau kuningan berbentuk batang dgn diameter 2mm
Konstruksi:

1. dengan tang potong kawat yg dipakai menjadi 5 bagian masing2 4 cm panjangnya.
2. dgn kikir sedang (permukaan kikir) ratakan ke 4 bagian yg berlubang pd konektor N tsb sehingga memudahkan kita menyolder bagian reflektor.
3. dengan solder high power (yg mempunyai panas 80 watt minimal) solder ke empat batang kawat yg mau dipake di ke 4 sisi konektor tsb,hati2! panas yg cukup tinggi bisa melelehkan insulasi teflon yg ada di antara titik tengah konektor.(bagian yg berwarna putih susu).
4. tekuk 0.5 cm pd ujung kawat (4 buah yg ditekuk) dgn sudut 90 derajat,hati2 dengan konstruksi yg sedikit rumit ini.

sesudah terpasang di keempat sisi konektor N,mk anda bisa solder bagian “hot wire” yg berfungsi sbg antena yg sesungguhnya dgn hati2 dan tentu saja rapi bukan..?
kemudian rapikan jg ujung bagian bawah yg ada di bagian konektor N
kemudian dengan sebuah teknik “jembatan keledai” kita gambar sudut 30 derajat dan tempel pd dinding utk mengukur ketepatan sudut antena yg kita buat…
kemudian potong dgn tepat 3.05 cm radial (reflektor= yg tertempel pd ke empat sudut konektor N) dan central wire (yg tersolder di tengah konektor) ini perlu kehati2an dan ketepatan tinggi sebab kita akan bekerja pd freq yg amat tinggi! mk semakin tinggi suatu freq,akan semakin kritis pula nilai2 yg ada pd pembuatan antena tsb…


TIPS:
pembuatan ini di alokasikan pd channel 6 (2.44 Ghz) atau tepat pd titik tengah pd freq channel yg ada (13 channel).saran terbaik adl jangan memotong dulu bagian tengah sepanjang 3.0 cm,tp biarkan sepanjang apa adanya dan kurangi tiap 0.1 cm dan ukur besaran signal dgn memaki software semacam Netstumbler.ini disebut “tuning and matching” jd kepanjangan yg dikehendaki hendaklah fixed dgn channel AP or wlan yg akan anda tuju.anda bisa melihat tuning by cutting ini sukses bila besaran signal akan membesar pd titik potong yg dikehendaki.
semakin pendek panjang iner wire semakin tinggi channel yg bisa diakses (dlm hal optimum signal receive maupun transmit) dan semakin rendah chanel yg dipakai semakin panjang pula iner wire….
perhitungan omni:
I. Omni Directional Antenna
a. Rubber Ducky Antenna
Banyak ditemukan diperalatan 2.4GHz 802.11 wireless network, seperti access point dan router wireless.
Penambahan gain rata-rata untuk antenna seperti ini sekitar 2-2.2dbi (www.martybugs.net)
Salah satu cara untuk menambahkan kekuatan daya dari wireless omni directional antenna / rubber ducky antenna ini adalah dengan menambahkan semacam parabola tepat di belakang antena, sehingga antena yang tadinya menyebar luas dapat diarahkan ke dalam salah satu area tertentu. Gain yang didapat sekitar 10 to 12 dB